If it's not what You are looking for type in the equation solver your own equation and let us solve it.
784+x^2-80x=0
a = 1; b = -80; c = +784;
Δ = b2-4ac
Δ = -802-4·1·784
Δ = 3264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3264}=\sqrt{64*51}=\sqrt{64}*\sqrt{51}=8\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{51}}{2*1}=\frac{80-8\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{51}}{2*1}=\frac{80+8\sqrt{51}}{2} $
| 123+69=x | | -1+3b=5b+1 | | 1/2(20h-4)=8h-46 | | 4x-5(2x+1)=0x+-6 | | 35+95=x | | x+79+x+117=180 | | 9p^2+30p+25=48 | | 4m+3=2m-7 | | 1/4(x-4=5 | | 4(2c+8)=16 | | 5-3k=6k-2k+8 | | 10w+13=-7 | | 150-90=x | | 150+90=x | | 17=7+2r | | 80x+35=915 | | 1/2h+3/4h=28 | | -0.28(8+x)=14 | | 8x+4=−52 | | 45-140=x | | x-1.2=4.6 | | 2(x+4)=-2x+4x-10 | | 5x+23x=14 | | 8^y+15^y+27=0 | | 45+140=x | | 6–b=5b+3 | | 2y=18* | | 6x+3=x+73 | | 9b-12b=3b | | 11=9p-5p | | 5x+8+3x=3−2x−5 | | Y80-9y=6y |